Electronic Fundamentals - Not Obvious

11-Nov-2025

Clyde Eisenbeis

Electronic fundamentals that every EE student should know when they graduate from college.

Capacitors are one of the most important electronic components on a PCB.

- 1) All capacitors have ESR (Equivalent Series Resistance).
 - Ceramic capacitors have a low ESR.
 - They can filter high-frequency electronic noise.
 - They cannot filter low frequency electronic noise.
 - They have the longest life span.
 - Non-ceramic capacitors have a high ESR
 - They can filter low frequency electronic noise.
 - They cannot filter high frequency electronic noise.
 - Ceramic capacitors (such as 2.2 µF) and non-ceramic capacitors (such as a Tantalum 47 µF) are needed for an "external power input" rail.
 - Digital components and switching voltage regulators create digital electronic noise on the PCB voltage rail.
 - Digital fast rising edges and fast falling edges affect the PCB voltage planes and ground planes.
 - A ceramic 0.1 μF capacitor should be on the voltage input of "every" IC.
 - All digital ICs and analog ICs.
 - This reduces digital electronic noise which can affect analog signals.

- 2) Overrate every capacitor by a factor of two. The exception is the tantalum capacitor which needs to be overrated by a factor of three.
 - Some years ago, a control panel for an IBM computer caught fire in an electronic assembly plant.
 - A 6.8 V tantalum capacitor was on a 5 V rail.
 - There should have been a 15 V, or higher, voltage rating on that tantalum capacitor.
 - IBM was fortunate this happened in an electronic assembly plant, not at a customer's site.

- 3) "Bifilar Choke" are two inductors wrapped in parallel.
 - "Bifilar Choke" current "out" will always equal the current "in".
 - A "Bifilar Choke" filters undesired "electronic noise" from entering the PCB.
 - It also filters "electronic noise" from exiting the PCB.
 - This may be necessary for meeting EMC requirements.
 - With a "Bifilar Choke":
 - "Communication" is possible because the "current in" equals the "current out".

- 4) Multilayer PCBs are important.
 - One PCB inner layer should be a ground layer. Another PCB inner layer should be a voltage layer (commonly layer 2 and layer 5) for a 6-layer PCB.
 - This helps mitigate digital electronic noise from affecting other electronic components on the PCB.
 - When a motor is used, place a common mode inductor between the motor PCB ground / voltage plane and the electronic PCB ground / voltage plane.
 - For a common mode inductor, the current "in" must equal the current "out".
 - This eliminates almost all motor electronic noise from affecting the analog circuitry.
 - Multilayer PCBs make it easier to meet EMC requirements.

- 5) Voltage regulators convert a DC voltage into different DC voltage.
 - There are three types of voltage regulators. Linear voltage regulators, switching voltage regulators, and LDO (low dropout regulators).
 - The common output of "all" 3 V voltage regulators:
 - When V_{in} = 5 V
 - \rightarrow V_{out} = 3 V.
 - When V_{in} = 12 V
 - $V_{out} = 3 V.$
 - \circ V_{out} remains at 3 V regardless of the V_{in} voltage.
 - For linear voltage regulators:
 - $\circ\quad V_{\text{in}}$ must always be a higher voltage than $V_{\text{out}}.$
 - o Iin "always" equals Iout.

- A linear voltage regulator is "not" power efficient (Pefficiency = Pout / Pin).
- A 3 V linear voltage regulator example:
 - $V_{in} = 6 \text{ V}$ and $I_{in} = 30 \text{ mA} \dots V_{out} = 3 \text{ V}$ and $I_{out} = 30 \text{ mA}$.
 - \rightarrow P_{in} = 6 V * 30 mA = 180 mW.
 - \rightarrow P_{out} = 3 V * 30 mA = 90 mW.
 - \rightarrow P_{efficiency} = 90 mW / 180 mW = 50%.
 - $V_{in} = 12 \text{ V}$ and $I_{in} = 30 \text{ mA} \dots V_{out} = 3 \text{ V}$ and $I_{out} = 30 \text{ mA}$.
 - \rightarrow P_{in} = 12 V * 30 mA = 360 mW.
 - \rightarrow P_{out} = 3 V * 30 mA = 90 mW.
 - \rightarrow P_{efficiency} = 90 mW / 360 mW = 25%.
- Linear voltage regulators do not create electronic noise.
- For switching voltage regulators:
 - V_{in} can be a higher voltage than V_{out}.
 - And V_{in} can be a lower voltage than V_{out}.
 - I_{out} "can be larger" than I_{in}.
 - A switching voltage regulator "is" power efficient.
 - A 3 V switching voltage regulator example:
 - When a switching voltage regulator has 80% power efficiency:
 - Pout = 3 V * 30 mA = 90 mW
 - $^{\circ}$ P_{in} = 90 mW / 80% = 113 mW.
 - \rightarrow When $V_{in} = 6 V$
 - $^{\circ}$ I_{in} = 113 mW / 6 V = 18.8 mA.
 - \rightarrow When $V_{in} = 12 \text{ V}$.
 - $^{\circ}$ I_{in} = 113 mW / 12 V = 9.4 mA
 - A larger V_{in} requires less I_{in}.
 - When a switching voltage regulator has 90% power efficiency:
 - \rightarrow P_{out} = 3 V * 30 mA = 90 mW.
 - $^{\circ}$ P_{in} = 90 mW / 90% = 100 mW.
 - \rightarrow When $V_{in} = 12 \text{ V}$.
 - $^{\circ}$ I_{in} = 100 mW / 12 V = 8.3 mA.
 - Higher P_{efficiency} requires less I_{in.}
 - Batteries last longer.
 - Switching regulators are essential for low input power requirements.
 - They do require more electronic components.
 - They do generate electronic noise.
- LDO's (low dropout regulators) allow a small voltage difference between V_{in} and V_{out}.
 - \circ V_{in} = 3.6 V is commonly acceptable for V_{out} = 3 V.
 - Linear voltage regulators and switching voltage regulators:
 - Commonly require a larger voltage difference between V_{in} and V_{out}.
 - Datasheets provide those details.

- 6) FRAM is like RAM, except FRAM does not lose the FRAM contents when powered down.
 - When powered on, the FRAM contains the same contents as before loss of power.
 - A FRAM cell can be rewritten, one cell at a time.
 - With FLASH, it is not possible to re-write only one cell.
 - With FLASH, an entire segment must be erased, and then rewritten.
 - FLASH can wear out after being erased and rewritten about 24,000 times.
 - A FRAM, when rewritten every 250 nsec, will last more than 75 years.
 - FRAM is larger, and slightly more expensive. But in some cases, it is necessary.

- 7) Amplifying an electronic signal can amplify electronic noise.
 - Instrumentation Amps:
 - o Minimize "electronic noise" amplification.
 - CMRR (common mode rejection ratio) specifies level of electronic noise reduction.
 - When CMRR equals 100 dB, the electronic noise is reduced (10⁽¹⁰⁰ dB / 20 dB)) equals 100,000.
 - > The common mode electronic noise is reduced 100,000 times.
 - Instrumentation Amps require close to zero current into the Instrumentation Amp inputs.

- 8) When the op amp "inputs", or the op amp "outputs", approach the "voltage rail", V_{out} can become inaccurate.
 - Some rail-to-rail op amps allow V_{out} to approach voltage rails with minimal effect.
 - Some rail-to-rail op amps allow V_{in} to approach voltage rails with minimal effect.
 - Datasheets provide these parameters.
 - Rail-to-rail descriptions may not be completely accurate as rail-to-rail can mean to within a few hundred mV.

- 9) Digital potentiometers can change resistor values electronically.
 - For example, a 100 k Ω , 8 bit digital potentiometer resistor value can be changed electronically.

- \circ Changed with a minimum of 0 Ω to a maximum of 100 k Ω in increments of 256 values.
- A digital potentiometer can change an op amp gain
 - While the op amp is powered.
- Ditto for an op amp offset.

- 10) Tin Whiskers have become a problem.
 - The European Union (RoHS) banned the use of lead in solder.
 - Solder had, in the past, been a combination of tin and lead.
 - Without the addition of lead, tin whiskers grow from tin over time.
 - Tin whiskers "short" electronic circuits which results in failure.
 - This has led to early electronics failures
 - Two satellites fell out of the sky because of tin whiskers.
 - Lead is allowed for airplane electronics.
 - > Tin whiskers can still occur as electronic components also have no lead.

- 11) Some years ago, multilayer PCBs started failing, months after installed at a customer site
 - The culprit was dendrite growth between PCB traces in the inner layers of a multilayer PCB.
 - Dendrite growth occurs over a length of time.
 - Dendrite growth is metallic which can eventually short PCB internal traces.
 - The internal PCB layers must be cleaned properly before they are stacked together.
 - This inhibits dendrite growth.

- 12) Optoisolators (optocouplers or photocouplers) contain an LED and a phototransistor.
 - Current through an LED, results in light from the LED.
 - The LED light is detected by a phototransistor.
 - Results in current through phototransistor.
 - More current through the LED results in a higher intensity light.
 - Results in more current through the phototransistor.
 - Optoisolators provide galvanic isolation.
 - Zero current flow between the input current and the output current.
 - Commercially available optoisolators.

 Can withstand up to 10,000 V between the input voltage and output voltage.

13) Hall Sensors detect a magnet that is stationary.

- Prior to Hall Sensors, the only way to detect a magnet is by moving a coil of wire near a magnet or moving a magnet near a coil of wire.
- Hall Sensors can determine magnetic field strength while stationary or while moving.
- Hall Sensors can be used for:
 - Printers (doors left open)
 - Factory automation (robotics, conveyor belts)
 - Industrial controls (energize motor windings at correct time)
 - Vehicles (wheel speed, anti-lock brake, traction control, engine ignition timing).

14) Crystals generate precise frequencies.

- Crystal frequencies change very little with temperature changes.
 - Precise frequencies are needed for:
 - Computers, cell phones, satellites, and many other devices.
 - Crystals range from kilohertz to hundreds of megahertz.
 - Crystals provide only microamps of current.
 - It is common to place a crystal in close proximity to an IC.
 - They need to be connected to an IC high input impedance.
 - It is common to place small value capacitors in the close proximity to the crystal.
 - Commonly between 5 pF and 22 pF.
- A crystal alternative is a resonator.
 - A resonator provides a fairly constant frequency.
 - Less accurate than a crystal.
 - A resonator is lower cost.
 - Unfortunately, the frequency can change with temperature changes.
- Another crystal alternative is oscillators.
 - An oscillator provides a constant frequency (the same as a crystal).
 - Oscillators provide more current than crystals.
 - Useful when multiple components need a constant frequency.
 - Can be located long distances (inches) from components.
 - Oscillators are higher cost, consume more real estate, and consume more power.

- 15) Electronic "impedance"
 - Impedances are:
 - Capacitors
 - Are resistant to voltage changes (AC).
 - There are phase changes.
 - Inductors
 - Are resistant to current changes (AC).
 - There are phase changes.
 - Resistors
 - Are not resistant to voltage changes or current changes.
 - There are no phase changes.
 - The letter "Z" denotes impedance.

16) "Every" electronic product must meet EMC (Electromagnetic Compatibility) requirements.

- 17) SPICE electronic models predict "end results".
 - Bench top testing can be difficult.
 - o Changing "every" component, one at a time, is time consuming.
 - Micro-Cap is the best SPICE model I've ever used (over a span of 20 years).
 - Other SPICE programs do not perform as well as Micro-Cap.
 - TINI-TI (Texas Instruments) ... LTspice (Linear Technology)
 MATLAB ... etc. .

None of them are even close to Micro-Cap capability

- Micro-Cap is easy to use.
- SPICE models allow varying component tolerances such as:
 - Changing temperatures.
 - Estimating worst case values.
- All EE's at Emerson used Micro-Cap
 - o Even though it cost \$4,500 each.
 - Micro-Cap is now free.
 - Andy Thompson, owner of Spectrum Software, has retired.
- See the website Electronics.FoxPing.com for a Micro-Cap demo and examples.
 - 6.1 Electronic Datasheets, Micro-Cap

Ш	Micro-Can	Download &	Examples I	П
111	WIIOIO CUP	DOWINGE A		

Electronic Fundamentals at https://electronics.foxping.com/ has links to YouTube video clips.